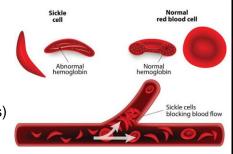
Alloimmunization & Sickle Cell Disease

Objectives:


- 1. Discuss alloimmunization rates for Sickle Cell Disease (SCD) patients compared to other groups of patients.
- 2. Describe the benefits and challenges of antigen-matching protocols for SCD patients.
- 3. Explain how a SCD patient might develop alloantibodies to an antigen present on his/her cells.

Quick lesson:

SCD:

- Gene mutation results in variant hemoglobin molecule
 - Sickle shaped RBCs
 - o Chronic anemia
 - Micro-occlusions in capillaries of tissues/organs
- Chronically transfused (prophylactic or treatment of acute crisis)

What percentage of all patients make alloantibodies? <5%

https://www.froedtert.com/sickle-cell-disease/symptoms

What percentage of SCD patients make alloantibodies?

Much more than the overall population

Some reasons for this: (remember, we still don't know the science of who will make antibody, and who won't)

- Transfusion load? SCD patients receive many more RBC units than overall population
- Disease state? chronic inflammation
- Disparity in antigen frequencies between donor base and SCD recipients?

How do we minimize or prevent alloimmunization for SCD patients?

Antigen matching (phenotype matching) programs vary:

- Match for Rh antigens (D,C,E,c,e) & K
- Match for Rh, K, Fy^a
- Full-phenotype matched: Rh, K, Fy, Jk, Ss

"Antigen-matching" means... Providing units negative for all antigens the patient's cells lack

1

Nebraska Community Blood Bank **& New York** Blood Center

Practice:

Patient phenotype: D+, C-, E-, c+, e+; K-,k+: Fy(a-b+); Jk(a+b-); S-,s+

- 1. What alloantibodies can the patient make? List them:
- 2. Study the phenotypes of the following units. Which units are fully phenotypematched? (choose all that apply)
 - a) R₀r; K-,k+; Fy(a-b+); Jk(a+b+); S+,s+
 - b) R₁R₂; K-,k+; Fy(a-b-); Jk(a+b-); S-,s+
 - c) R_or; K-,k+; Fy(a-b-); Jk(a+b-); S-,s+
 - d) rr; K-,k+; Fy(a-b+); Jk(a+b-); S-,s+

Answers: 1. Anti-C, Anti-E, Anti-K, Anti-Fy^a, Anti-Jk^b, Anti-S. 2. c,d

	- Fisher-Race	Modified		Prevalence (%)									
	Haplotype	Weiner Haplotype	Caucasian	African descent	Asian								
/e	DCe	R_1	42	17	70								
positive	DcE	R ₂	14	11	21								
	Dce	R _o	4	44	3								
Rh	DCE	R _z	¢0.01	<0.01	1								
ve	ce	r	37	26	3								
negative	Ce	r'	2	2	2								
	cE	r"	1	<0.01	<0.01								
Rh	CE	r ^y	<0.01	<0.01	sients:								
	e adapted from Techi In locations wh	ere a majority		Many	CD patients:								
	donors are Cau nough antigen-	-	-	h0									

Most antigen-matching protocols include at least Rh and K. Let's look at Rh haplotypes:

Ways to address this challenge:

Recruitment of minority donors •

SCD patients is challenging!

- Recruitment of R_o donors •
- Mass scale phenotyping/genotyping of donors to identify Ro donors •

RCES

Community Blood Center

2

Nebraska Community Blood Bank **& New York** Blood Center

D-negative units are often transfused to SCD patients because... D-negative units are likely to be C-, E-

Antigen-matching Protocols for SCD Patients											
Benefits	Challenges										
 Prevent exposure to foreign antigens Prevent alloimmunization 	 Large demand for R_or & R_oR_o units Small percentage of donors might meet that criteria Use of D-negative units for SCD patients (D-negative units always in short supply) 										

Case study: surprising antibodies made by SCD patients

- SCD patient, 8 year old male
- Prophylactic transfusion schedule
 - o Transfused every 4 weeks
 - o Antigen-matching strategy: Match Rh, K
- Patient's phenotype:
 - D+, C+, È-, c+, e+: K-

1. What is the patient's probable genotype?

- a) R₀R₀
- b) rr
- c) R₁R₁
- d) R₁R₀

2. Given the antigen matching strategy (match Rh, K), what type of units will be transfused?

- a) E-, c-, K- units
- b) E-, C-, K- units
- c) E-, K- units
- d) E- units

Antibody screen results:

		Rh					Kell Duffy			ffy	Ki	dd		Μ	NS		Results			
		D C E c e		К	k	Fy ^a	Fy ^b	Jka	Jkb	Μ	Ν	S	S	5′	LISS	LISS				
																	RT	37C	IAT	
SCI	R_1R_1	+	+	0	0	+	0	+	+	+	+	+	+	+	+	+	0	0	2+	
SCII	R_2R_2	+	0	+	+	0	+	+	0	+	0	+	0	+	0	+	0	0	0	

Community Blood Center

3

Nebraska Community Blood Bank

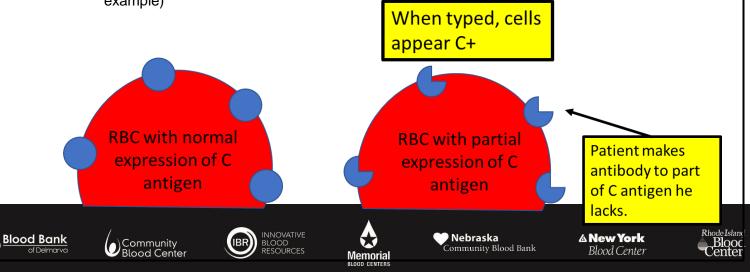
Case study (continued)

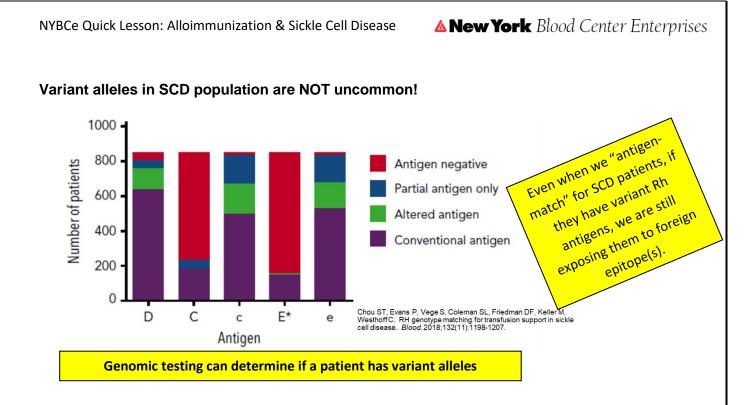
Antibody panel:

		Rh						Kell Duffy			Ki	dd		M	Results		
		D	С	Е	С	е	К	k	Fy ^a	Fy⁵	Jkª	Jk⁵	М	Ν	S	S	LISS IAT
1	R₁R₁	+	+	0	0	+	0	+	+	+	+	+	+	+	+	+	2+
2	R₁R₁	+	+	0	0	+	+	+	0	+	0	+	0	+	0	+	2+
3	R_2R_2	+	0	+	+	0	0	+	+	0	+	+	+	0	+	+	0
4	R₀r	+	0	0	+	+	0	+	0	0	+	0	+	+	+	0	0
5	r'r	0	+	0	+	+	0	+	+	0	+	0	+	+	0	0	2+
6	r"r	0	0	+	+	+	0	+	0	+	+	+	0	+	0	+	0
7	rr	0	0	0	+	+	+	+	0	+	+	0	+	0	+	+	0
8	rr	0	0	0	+	+	0	+	+	+	0	+	0	+	+	+	0
9	rr	0	0	0	+	+	0	+	+	+	0	+	+	0	0	+	0
10	R₁R1	+	+	0	0	+	0	+	+	0	+	+	+	+	+	0	2+
11	R ₀ r	+	0	0	+	+	+	+	0	0	+	+	0	+	+	+	0
Auto																	0

3. Which antibody seems to be present in the patient's plasma?

- a) Anti-D
- b) Anti-C
- c) Anti-K
- d) Anti-Fy^a


4. Wait. The patient's cells tested C+. Is this autoantibody?


- a) Yes, that is the only reasonable explanation.
- b) No, the autocontrol is not positive!

Answers: 1. d 2. c 3. b 4. b

SCD Patients and Variant Antigens:

- There are MANY variant alleles of RHD and RHCE genes
- Variant alleles are more prevalent in individuals of African descent
- May code for antigens with weak or partial expression (like weak D and partial D, for example)

Assessing Understanding:

- 1. Which of the following is true regarding alloimmunization rates of SCD patients compared to overall patient population?
 - a. Alloimmunization rates are lower due to SCD patients being immunocompromised.
 - b. Alloimmunization rates are lower due to unknown causes.
 - c. Alloimmunization rates are higher due to infrequent transfusion episodes
 - d. Alloimmunization rates are higher due to increased transfusion load.

2. What is the purpose of antigen matching protocols for SCD patients?

- a. To prevent TACO.
- b. To prevent iron overload.
- c. To prevent alloimmunization.
- d. To prevent transfusion-transmitted diseases.

3. Choose the best explanation for why some SCD patients make Rh antibodies to antigens that are EXPRESSED on their own cells, and despite antigen-matching protocols.

- a. Because donor units are often mistyped for Rh antigens.
- b. Because patients might have variant alleles that code for partial Rh antigens.
- c. Because samples get mixed up in the lab.
- d. Because they are transfused ABO incompatible units.

Answers: 1. d 2. c 3. b

5

Nebraska Community Blood Bank **& New York** Blood Center

